品系技术类型
研究领域


BKS-Leprem2Cd479/Gpt
BKS-db|Strain
NO.T002407
Knockout (KO)
- 性别: --
- 周龄: --
- 基因型: --
- 选择数量:
- --
¥--

BKS-Leprem2Cd479/Gpt
BKS-db|Strain
NO.T002407
Knockout (KO)
性 别
周 龄
基因型
*以发货时库存基因型为准
小鼠分类
- 选择数量:
-
¥--
小计: ¥{{good.oprice}}原价: ¥{{good.price}}{{good.discount}} 折
小计: ¥{{good.price}}



- 基本信息



- 品系说明:1)血糖特点 BKS-db 4~8 W为血糖快速升高期,该期间小鼠血糖浮动范围较广,不同个体间的血糖差异也较大,如果采用此周龄段的小鼠进行实验,建议实验前严格测血糖分组,且实验结果可能会有一定的误差。8W以后血糖值渐渐趋于一致,但仍然存在个体差异导致血糖不均一的情况,建议增加20%~30%的富余量。发病标准:空腹血糖>11.1mmol/l,随机血糖>16.7mmol/l。环境刺激、小鼠状态、测量时间及饱腹程度(禁食时间)等都会影响血糖测定。建议饲养在屏障设施中,保证饮水和饮食充足,勤换垫料,减少应激,统一测血糖时间和采血方式,接收到小鼠后进行1~2周适应性饲养再实验。禁食血糖空腹一般不超过6h。 2)糖肾特点 一般情况下,部分小鼠在16W开始出现严重的肾脏并发症,表现为肾脏组织粘连,无法取出完整肾脏做病理学检测或小鼠死亡的情况。部分血糖较高小鼠可能会在12W左右出现类似严重肾脏并发症。如进行血糖相关研究,建议在实际入组数量的基础上额外增加20%~30%以上的富余量,或者选择较早周龄取材。一般对于肾脏病变的评价指标有病理切片、血生化和尿生化,其中尿生化数据是相对最不稳定的,建议结合其他两项检测来进行判断。如进行糖肾相关研究,需严格设置入组指标,选择合适的小鼠入组实验。另外,易出现批次间差异,建议批次内比较。
- 销售状态:IF(正常销售)
- 保存方式: 活体,冷冻
- 品系背景:[N000214] C57BLKS/JGpt
- 微生物等级: SPF级
- 品系策略: 登录后查看品系策略,点我登录
- 品系策略: T002407.BKS-db strain Info.pdf T002407.BKS-db 品系资料.pdf
- 研究领域:疾病与药物评价模型,代谢模型,糖尿病模型,肥胖模型
- 领域描述:1.II型糖尿病研究和肥胖症的研究2.内分泌缺陷研究3.代谢研究4.生殖生物学研究。
- 发表文献:
Long-term statins administration exacerbates diabetic nephropathy via ectopic fat deposition in diabetic mice https://doi.org/10.1038/s41467-023-35944-z Aqueous extract of Scrophularia ningpoensis improves insulin sensitivity through AMPK-mediated inhibition of the NLRP3 inflammasome https://doi.org/10.1016/j.phymed.2022.154308 Celastrol inhibits TXNIP expression to protect pancreatic β cells in diabetic mice https://doi.org/10.1016/j.phymed.2022.154316 Inulin-Type Fructans Change the Gut Microbiota and Prevent the Development of Diabetic Nephropathy https://doi.org/10.1016/j.phrs.2022.106367 Hepatic leptin signaling improves hyperglycemia by stimulating MAPK phosphatase-3 protein degradation via STAT3 https://doi.org/10.1016/j.celrep.2022.111053 A novel mouse model of diabetes, atherosclerosis and fatty liver disease using an AAV8-PCSK9-D377Y injection and dietary manipulation in db/db mice https://doi.org/10.1016/j.bbrc.2022.07.031 m(6)A reader YTHDC1 modulates autophagy by targeting SQSTM1 in diabetic skin https://doi.org/10.1080/15548627.2021.1974175 Dendrocalamus latiflorus and its component rutin exhibit glucose-lowering activities by inhibiting hepatic glucose production via AKT activation https://doi.org/10.1016/j.apsb.2021.11.017 Elevated branched-chain α-keto acids exacerbate macrophage oxidative stress and chronic inflammatory damage in type 2 diabetes mellitus https://doi.org/10.1016/j.freeradbiomed.2021.08.240 VDR/Atg3 axis regulates slit diaphragm to tight junction transition via p62-mediated autophagy pathway in diabetic nephropathy https://doi.org/10.2337/db21-0205 Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism https://doi.org/10.1016/j.cmet.2020.11.017 Peroxiredomin-4 ameliorates lipotoxicity-induced oxidative stress and apoptosis in diabetic cardiomyopathy https://doi.org/10.1016/j.biopha.2021.111780 MiR-337-3p lowers serum LDL-C level through targeting PCSK9 in hyperlipidemic mice https://doi.org/10.1016/j.metabol.2021.154768 Human foreskin-derived dermal stem/progenitor cell-conditioned medium combined with hyaluronic acid promotes extracellular matrix regeneration in diabetic wounds https://doi.org/10.1186/s13287-020-02116-5 High glucose induces Drp1-mediated mitochondrial fission via the Orai1 calcium channel to participate in diabetic cardiomyocyte hypertrophy https://doi.org/10.1038/s41419-021-03502-4 Cdk5-mediated phosphorylation of Sirt1 contributes to podocyte mitochondrial dysfunction in diabetic nephropathy https://doi.org/10.1089/ars.2020.8038 Hydralazine as a Versatile and Universal Matrix for High-Molecular Coverage and Dual-Polarity Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging https://doi.org/10.1021/acs.analchem.1c00498 circRNA_010383 acts as a sponge for miR-135a, and its downregulated expression contributes to renal fibrosis in diabetic nephropathy https://doi.org/10.2337/db20-0203 A novel GLP-1 and FGF21 dual agonist has therapeutic potential for diabetes and non-alcoholic steatohepatitis https://doi.org/10.1016/j.ebiom.2020.103202 CCR2-engineered mesenchymal stromal cells accelerate diabetic wound healing by restoring immunological homeostasis https://doi.org/10.1016/j.biomaterials.2021.120963 RIPK3-Mediated Necroptosis in Diabetic Cardiomyopathy Requires CaMKII Activation https://doi.org/10.1155/2021/6617816 Purβ promotes hepatic glucose production by increasing Adcy6 transcription https://doi.org/10.1016/j.molmet.2019.11.008 Selection of a Full Agonist Combinatorial Antibody that Rescues Leptin Deficiency In Vivo https://doi.org/10.1002/advs.202000818 SIK2 protects against renal tubular injury and the progression of diabetic kidney disease http://doi.org/10.1016/j.trsl.2022.08.012 A composite hydrogel containing resveratrol-laden nanoparticles and platelet-derived extracellular vesicles promotes wound healing in diabetic mice http://doi.org/10.1016/j.actbio.2022.10.038 Schisandrin B Attenuates Diabetic Cardiomyopathy by Targeting MyD88 and Inhibiting MyD88-Dependent Inflammation http://doi.org/10.1002/advs.202202590 Pancreatic alpha cell glucagon-liver FGF21 axis regulates beta cell regeneration in a mouse model of type 2 diabetes https://doi.org/10.1007/s00125-022-05822-2 ChemR23 signaling ameliorates cognitive impairments in diabetic mice via dampening oxidative stress and NLRP3 inflammasome activation https://doi.org/10.1016/j.redox.2022.102554 Positive feedback loop of miR-320 and CD36 regulates the hyperglycemic memory-induced diabetic diastolic cardiac dysfunction https://doi.org/10.1016/j.omtn.2022.12.009 THADA inhibition in mice protects against type 2 diabetes mellitus by improving pancreatic beta-cell function and preserving beta-cell mass https://doi.org/10.1038/s41467-023-36680-0
*使用本品系发表的文献需注明:BKS-db mice(Strain NO.T002407)were purchased from GemPharmatech (Nanjing, China).